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INTERIM PREDICTIONMETHODFORTURBINE NOISE
BY

EUGENEA. KREJSAANDMICHAEL F. VALERINO

SUMMARY

A turbine noise prediction method for interim use in the NASA Air-

craft Noise Prediction Program is selected. The method predicts the

I

"-_ level, directivity, and one-tilirdoctave band spectra of far field turbine

noise as a function of engine parameters. The selcction results from

a review of turbine ,oise data and prediction methods available in the

open literature. It is concluded that the state-of-the-artturbine noise

prediction capability is primitive and that the selected method represents

only a temporary interim approach. Recommendationsare made on research

requirements.

INTRODUCTION

With reduction of fan noise (through noise-reductiondesign features

and fan duct suppression treatment) and of jet noise (as characterizedby

high bypass ratio turbofan engines), the turbine can become a contributor

to the overall propulsion system noise (see references l and 2) and hence

requires consideration for proper determination of aircraft flyover noise

levels.

The purpose of this report is to recommend a method for predicting

turbine noise as a component of total aircraft noise for the NASA Air-

craft Noise Prediction Program (ANOPP). This Program is being developed

at Langley Research Center in conjunctior with other NASA Centers and

with help frem industry representatives. In the Program, the various

STAR category Ol
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contributors a1_dmodifiers of aircraft noise are summed at various loca-

tions in order to predict a noise footprint for siPgle- or multiple-event

aircraft flights. It is required that this prediction method be based

on the present state-of-the-art,and that the method predicts the level,

directivity, and spectra of turbine noise in terms of convenie,ltengine

parameters.

Limited experimental data on turbine noise are available f_om both

turbine-rigand full-scale-enginetests. The earliest published evidence

of the existence and potential importance of turbire noise was presented

by Smith and Bushell (Referencel). The most convincing evidence reported

by Smith and Bushell was the existence of a clearly defined tone at the

turbine blade passage frequency. The data in Reference l were obtained from

both a turbine rig and ful]-sca!e engines. Turbine noise data for the NASA

Quiet Engine C are reported in Reference 2.

The first published turbine noise correlation was presented in

Reference I. The correlation approach was based on the assumption that

the mechanisms of noise gereration for a turbine were comparable to

mechanisms of noise generation _or a fan. Two types of noise, discrete

tones and broadband (referred to as "vortex" in Reference l) nois_, were

considered separately for correlation. The tone noise was reported to

result from the cyclic interceptiunof the guide vane wakes by the rotor

blades and the interactionof the rotor wakes with the following vane row.

The broadband noise was described as resulting froF,random lift fluctua-

tions ollboth the rotors and the stators. Reasonable success was achieved

in correlating the broadband noise. However, correlation attempts for the

turbine tones did not reduce the scatter of the plotted data sufficiently

to reveal any trends.
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Other turbine noise correlations that currently exist in the liter-

ature, are those presented by Dunn and Peart in Reference 3,by Matthews,

Nagel, and Kester in Reference 4, and by Kazin and Matta in Reference 5.

The method which is recommended herein for ANOPP use is that pre-

sented by Dunn and Peart in Reference 3. This method is basically as

derived by Smith and Bushell, but the predicted levels have been adjusted

by Dunn and Peart to agree with available turbine noise data from turbo-

fan engines. An alternate procedure for predicting turbine noise is also

proposed herein. This is the correlation of Kazin and Matta, Reference 5,

based on data from several General Electric engines.

TURBINE NOISE EXPERIMENTAL MEASUREMENTS

Turbine noise measurements from a special turbine test rig and from

full-scale engine static tests have been reported in the literature by

various investigators. The tests reported in Reference l were conducted

with single- and two-stage cold model turbines. The data from these tests

show that turbine noise consists of broadband noise and tones at harmonics

of the blade passage frequency. The topes peaked at angles ranging from

120 degrees to 140 degrees from the inlet. The broadband noise peaked at

100 degrees to 120 degrees from the inlet. Comparison of the rig data

for one- and two-stage turbines with data from engines having three- or

four-stage turbines showed a systematic increase of the broadband noise

with increasing number of stages. Similar comparisons for the tone were

inconclusive

The full-scaleengine tests reported in References Z and 6 for NASA

Quiet Engines C and A, respectively,were performed for a nunber of engine
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configurations incorporatingacoustic treatment for different noise

sources. One objective of the program was to develop and evaluate

acoustic treatment linings for suppression of turbine generated noise.

Such tests on full-scale engine configurationsin which the fan noise is

highly suppressed provide information on turbine noise. The accuracy

and detail of description of the deduced turbine noise depends on the

intensity of the turbine noise relative to other sources and hence, on how

well obscuring noise sources are identified and either suppressed or

accounted for. Figure l shows far-field one-third octave band spectra

at 120 degrees from the inlet for Quiet Engine C with and without turbine

noise acoustic treatment. In both cas_s the fan noise was highly suppressed.

Without turbine noise acoustic treatment, a spike in the spectrum occurs

in the 6300 hz. band, which contains the blade passage frequency of the last

two stages of the turbine. The fact that acoustic treatment, located in tile

engine core downstream of the turbine,siqnificantlyreduced this spike

verified that this spike originated in the ccre engine and that other sources

did not obscure the turbine tone.
TURBINE NOISE CORRELATIONS

In arriving at an empirical correlation of turbine noise data ob-

tained from turbine rig and full-scale engine tests, Smith and Bushell

first considered the possible governing parameters assuming correspondence

between the noise generation mechanisms of the fan/compressorand those

of the turbine. Because of difficulties in determining or adequately

describing some of the possible governing parameters (e.g. turbine-blade

life curve slope, turbulence intensity) Smith and Bushel" limited the

number of parameters utilized in the correlation attempt. Turbine broadband
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noise and discrete tones were considered separately. The prime correla-

tion parameter for both broadband noise and discrete tones was chosen

to be the blade relative velocity, VreI. The function chosen to describe

the broadband noise also included the .(fects of the turbine size in terms

of the mass flow, m, and the local speed of sound, a. The equation for

the peak sound pressure level of the broadband noise suggested by data ob-

tain _ for single- and two-stage model turbines and for full-scale engine

3- and 4-stage turbines is given as:

SPL PEAK,

BROADBAND = K+ lO log m + 30 log 1116 + 30 log Vrela

When correlated against final rotor Vrel, sound levels from the two-stage

model turbine were about 12 or 13 dB higher than the single-stagemodel.

This differencewas attributed to the effects of turbulence level of the

air entering the second stage of the two-stage model turbine (the approaching

air was nearly turbulence-freefor both model turbines). The levels for the

full-scale engine turbines are slightly higher than for the two-stage

turbine model (e.g., the turblne noise for the full-scale engine with three

turbine stages is about 2.5 dB higher than for the two-stage model turbine
and the four stage engine data fall above the three stage). Smith and Bushell

interpreted this result to indicate that there is a lO lOglON relationship
with number of stages.

For discrete tones, the correlation also included the effect of

stator-rotor spacing to chord ratio, S/C. Empirical correlation attempts

for the discrete tone levels were inconclusive because of the large data

scatter. The correlation attempt is shown as a plot of

(SPL 10 logm+ 20 logS-30 log II161 versus log Vre1peak C
\ I

tone
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for both full-scale and model results, where the tone is the final stage

fundamental and VreI is the final-stage blade relative velocity. The

full-scale results roughly suggest a lO log V_ relationshipwhereas the

model results are inconclusive because of the larger scatter.

Dunn and Peart (Reference 3) present calculationalprocedures for

predicting ground noise contours during the single-event takeoffs fly-

overs, and/or landing operations of aircraft. The calculationai proce-

dures include formulations for the component noise sources. The formu-

lation for the turbine is essentially as derived by Smith and Bushell.

However, Dunn and Peart use lO log S/C to account fo, che spacing

effect on tones, whereas Smith and Bushell used 20 log S/C. The sound

pressure level given by the predictive method was adjusted by Dunn and

Peart to give best overall agreement with limited turbine noise data

inferred from turbofan engine data as shown by the solid lines in figure

2 (taken from Reference 3). A special case in the prediction procedure

is _he JTSD e_gine which mixes the core and fan flow internally. Dunn

and Peart recommend that the level of the predicted tone be reduced by

lO dB for this engine (dashed line). Others have observed changes in

turbine spectral shape with changes in core exhaust geometries. The

deviation of individual d_ta points from the established prediction line

ranges up to + 5 dB for the fundamental tone and + 9 dB for broadbandw _.

noise. The data scatter is large and the prediction capability is unsatis-

factory. Spectra and directivity curves are al_o given in Reference 3 for

discrete tone and broadband noise separately. Both turbine-noise com-

ponent_ ake highly directional, peaking at about llO degrees from the

inlet. Details of this procedure are given in the Appendix of this report.

_m
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In Reference4, Mathews,Nageland Kesterstatethattheywere able

to collapseturbinenoisedata fromJT9D,JT8D,and JT3Dengines. The

data,when plottedagainstturbinelaststagetip speed,were collapsed

by includingthe 9ffectsof mass flow,numberof stages,blade/vane

spacing,turbineinlettemperatu,e,and turbinework. Althoughan equa-

tionfor the correlationis not presented,it is statedthatthe dominant

parametersin the procedureare turbinework and turbinespeed. The work

termwas neededto collapsethe datafrom an enginewith a highlyloaded

turbineand thosefromengineswith lightlyloadedturbines. Since the

detailsof the f}rmof thiscorrelationwere not presented,it couldnot

be consideredfor the NASAAircraftNoisePredictionProgram.

In Reference5, Kazinand Mattapresenta correlationof turbinenoise

fromseveralGeneralElectricengines. This correlationwas developed

undercontractto FAA,as partof the GE/FAACore EngineNoiseControl

Program,whichwas startedin June 1973and includesexperimentalinvesti-

gationof turbinenoise and developmentof an analyticalturbinenoisemodel.

Two formsof correlationsare presented. The first,referredto as _ "pre-

liminarypredictionmethod"predicts _urbinesound levelsin terms

of overallturbinepressureratio,the bladetip speedof the laststage,

and the corenozzleexit area. The equationfor the overallsoundpressure

levelis:

PEAKOASPL = 40 loglo(AT/T)Turbine - 20 logloUT + 10 loglOA+ 164

where PEAKOASPL = overallsoundpressurelevelat 120 degreesand 60.96m.

(200ft) sidelineindB re 20_N/M2 and includesextragroundattenuation

and standardday air attenuation;and where
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Turbine = l

Pr = turbinetotal-to-staticpressureratio(PTo/PS2)

UT = bladetip speedof last stage,M/sec

A = corenozzlearea,M2

Y = ratioof specificheats,_--I.4

Spectraand direr+vitiesare not providedfor the preliminaryprediction

method.

The secondcorrelation,referredto as the "comprehensiveprediction

method",predictsthe noisegeneratedby eachstage individually.Two

equationsfor level,one for broadbandplus toneand one for tone,are

given. Theseare:

PEAKOASPL= 8.75 loglo tage

+ lO lOgloA - 5 loglo(2___S_+113.2

PEAKSPL = 21 lOglO\i/stage

+ 161.5+ I0 logloA

where PEAKOASPL= combinedbroadbandand discretefrequencyOASPLat

120 degreesand 60.96M (200ft.) sidelinein dB re 20_(N/M2andincludes

extragroundand standardday air attenuations.

PEAKSPL = toneSPL at 120 degreesand 60.96M. (200 ft.)sideline,

withoutair attenuationand EGA,in dB re 20_N/M 2. Here,

k-t'Jstage = i -X stg/

l
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PRstg = stagetotal-to-staticpressureratio

VreI = tip bladerelativevelocityat inletto the rotor,M/sec

UT = bladetip speed,M/sec

a = acousticvelocityat jr'et tn the rotor,M/sec.

A = turbinestageexitarea,M2

S/L = axial spacing/upstreambladechord

Y = ratioof specificheats,t,.l.4

Directivitiesare givenfor both the OASPLand the toneSPL at takeoff

and approachpowersettings. However,thesepower settingsare not de-

finedin termsof turbineparameters=nor are procedurespresentedfor

determiningthe directivitiesat other powersettings. At each far-

fieldangle,the toneSPL is antilogarithmicallysubtractedfromthe

compositeOASPL to yield a broadbandnoiseOASPL. Spectrafor the broad-

bandnoiseare presentedfor takeoffand approachconditions

COMPARISONWITH DATA

Some turbinenoisedata availableat NASA-LewisResearchCenter

fromseveralturbofanengineswere comparedwith predictedturbinenoise

usingthe methodsof References3 and 5. Figure3 is a plotof the

differencebetweenpredictedturbinenoise,usingthe methodof Reference

3, and measuredturbinenoise plottedagainsttip speed. Differencesbe-

tweenpredictedand measuredlevelsrange from-6 to +8 dB. Attemptsto

decreasethe scatterby includinga turbinework term failed.

Figure4 is _ olotof the differencebetweenpredictedlevels,using

the "preliminarypredictionmethod"of Reference5, and measuredturbine

levels. Differencesrangefrom -4 to +8 db, usuallywith a givenengine
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beingeitherover-or under-predicted.Detaileddatawere not avail-

ableto make comparisonsof the "comprehensivepredictionprocedure"

of Reference5 with data.

Somecomparisonof the methodsof Reference3 and 5 with data from

the JT8D-IOgrefanengineare presentedin Reference4. The method
_,

of Reference3, referredto as the "NASAMethod"in Reference4, under-

predictsthe refandataby about5dB at low speeds,but goes throughthe

data at highspeeds. The methodsof Reference5 predictslevelsabout

2 dB lowerthanthoseof Reference3.

RECOMMENDEDINTERIMMETHODFOR ESTIMATINGTURBINENOISE

Basedon the orece_ingcomparisons,bothof which are basedon limited

data,theredoe_not appearto be any significantdifferencein the accuracy

of eitherthe methodof Reference3 or the "preliminarypredictionprocedure"

of Reference5. The "prelimnarypredictionprocedure"of Reference5 cannot

itselfbe consideredfor ANOPPsince it does not includeestimatesof direct-

ivityor spectra. However,the "comprehensivepredictionprocedure"of

Reference5, which does includeestimatesof spectraand directivity,pre-

sumablyhas the potentialto be more accurates,nce _t has separatepre-

dictionsfor broadbandand tonenoise. Becausedatawere not availableto

verifythis presumption,and becausethe methodof Dunnand Peart,Reference

3, was indicatedas the recommendedprocedureprior to the publicationof
e

Reference5, themethodof Dunnand Peartwill stillbe consideredto be

the recommendedprocedure. However,the comprehensivepredictionprocedut'e

shouldbe consideredas an equallyaccura_ _Iternateprocedure.

n
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TURBINE NOISE RESEARCHREQUIREMENTS

A systematic experimental/analytical program specifically directed

at investigation :_f turbine noise generation mechanisms 13 required.

The experimental part ef the program should consist of both engine and

rig tests. Analytical work is needed to guide the experimental work

and to understand the results.

lurbine noise has been observed and measured on a variety of existing

engines. T)pically, however, noise and operational data from rnly a few

of these engines are available to a given researcher. The existing data

need to be collected and correlation attempts need to be made. Additional engine

tests should be made to increase the existing data Jase to investigate par-

ticular trends, and to take more detailed measurements to define the tur-

bine noise generation mechanisms.

A turbine noise facility is needed in order to provide the following

elements which are difficult to obtain on a full-scale engine and which

are necessary for systematic investigation of turbine noise mechanisms:

(a) a low background noise environment;

(b) a high degree of flexibility in setting up and testing different

turbines and turbine modifications;

(c) capability of testi_g over a wide range of operating conditions;

(d) capability of independent control of the important variables

affecting turbine noise (e.g., turbulence level and structure in ti.eup-

stream turbine flow); and

(e) convenienceof instrlJmentationplacement and maintenance which

makes for more detailed instrumentationthan possible or practical in

engine tests.

1977006122-013
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The turbineneiseelperi_ntal programshouldincludemeasurements

to definethe noisegeneratic6_and attenuationassociatedwith eachtur-

binebladeand vanerow. Measurementsin the exhaustductwould help to

isolatethe effectsof exhaustgeometryand flowon the transmissionof

turbinenoiseto the far field. Specialprobesmay have to be developed

to make thesemeasurE,_nts.

CONCLUDINGREMARKS

The primarypurposeof this reportis to selectan interimmethod

for predictingturbinenoisefor use in the NASAAircraftNoise pre-

dictionProgra,:.Turbine_oisedata _nd correlationsavailabEein the

open literatdreare reviewedand a recommendationmade. However,due

to the limiteddataavailableand the amountof scatterin the_edata,

the recomnlendedprocedureshouldbe viewedas a temporarymethod. As

mo_edatabecomeavailablethemethodshouldbe reevaluatedand modified

or replacedas warranted.
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APPENDIX

The turbine noise prediction method of Dunn and Peart (Reference 3)
is presented herein. The sound pressure levels are for 45.7 meter radius
from the source which can be corrected to l-meter radius through appli-
cation of spherical divergence and atmospheric absorption corrections

as indicated herein. Note that the term (l - Mo cos C)-4
appearinq in equations (1) and (4) represents the sound level amplifica-
tion due to source motion.

TURBINE NOISE PREDICTION

The turbine noise prediction procedure considers two noise components:
broadband and discrete tone. Both components have been related to the
relative tip speed of the turbine's last stage, the primary mass flow,
and local speed of sound at the turbine exit. The effects of stator/rotor
spacing on the discrete tone levels is also considered.

It has been assumed that both components have spectra shapes that
normalize with respect to the fundamental blade passage frequency of the
last stage of the turbine. The predicted spectra are given in terms of
I/3 octave band levels (dB re 20_N/M z) at the free-field, index (R=IM)
conditions.

Broadband component - The relation for the peak I/3 octave band
level at a radius of 45.7 M (150 ft.) from the source is

3

_VTR CR) ( m)VR CL m -I
= (l - Mo cos_) _ FI(O) - lO (1)

SPLpeak lO loglo JR

where

VTR = Relative tip speed of last rotor of the turbine. If VTR is uno
known, use 0.7 times the tip speed.

VR = Reference velocity, 0.305 M/S (l fps)

m = Primary mass flow

mR = Referencemass flow, 0.4536 KG/S (l Ibm/sec)

CL = Speed of sound at the turbine exit. If CL is unknown, use

CL= a T_with a = 19.8 M/S per (°K)0'5 = 48.5 fps per (_R)0'5
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TT7 : Turbineexit totaltemperature

CR = Referencespeedof sound,340.3M/S (1116fps)

Mo = AircraftMach number

= Anglebetweendirectionof aircraftmotionand soundpropagationpath

e = Directivityangle from the in]etaxis

Fl = Empiricalcurve shownin Figure5a.

Sampledata 3nd predictedresultsare shown in Figure2. The I/3
octaveband spectrumshapeis shownin Figure6. The soundpressurelevel
spectrumis definedas

SPL(f)= SPLpeak+ F2(f/fo) (2)

where

F2 = Functionshown in Figure6a.
fo = fundamentalbladepassagefrequencyof the lastrotorstageof

the turbine

= B_/(60(l-Mo cosC))

B = Numberbladesfor the last rotorstageof the turbine

= Shaft speedin rpm

The spectrumis extrapolatedto a radiusof one meter using

SPL(fI = SPL(f)I +33.2*AdB(f) (3)l M 145.7M Atm.Absorption

Discretetonecomponent- The discretetone componentof turbine
noise is definedin a mannersimilarto that for broadbandnoise. The
levelof the fundamentaltoneat 45.7M (150ft) from the sourceis
giver by

SPLt°ne= lO l°glO _LL -:mR _) (l- M0 cos_) (4)

+ F3 (8) + 56 + K
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where
F3 : Emperical curve shown in Figure 5b.

C/S : stator/rotor spacing shown in Figure 7.

K = correction for turbofans with a primary nozzle exit plane
upstream from the secondary nozzle exit plan, i.e., the JT8D

= -lO dB for the JT8D

= 0 dB for dual exhaust systems with co-planar exits, or turbojets

The frequency of the fundamental tone corresponds to the blade passage
frequency, fo above. The higher harmonics are assumed to fall off at
IO dB per harmonic number as shown in Figure 6b.

The tones are added to the broadband spectrum (eq. (2) above) before
the extrapolation to index (R=IM) conditions is made. After the extrapo-
lation the resulting spectrum represents the turbine noise at the free-
field, index condition.

i
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